robocup_knowledge
rgo2015/common.py
Go to the documentation of this file.
1 # COMMON KNOWLEDGE FILE RGO2015
2 
3 female_names = ["Anna","Beth","Carmen","Jennifer","Jessica","Kimberly","Kristina","Laura","Mary","Sarah"]
4 male_names = ["Alfred","Charles","Daniel","James","John","Luis","Paul","Richard","Robert","Steve"]
5 names = female_names + male_names
6 
7 # NEXT TIME: locations should be rooms
8 locations = [ 'kitchen', 'livingroom', 'hall', 'bedroom', 'office']
9 
10 # This dict holds all locations
11 # fill in: [{'room':'', 'category': '', 'location_name':'', 'manipulation':''}]
12 all_locations = [{'room':'livingroom', 'category': 'shelf', 'location_name':'cupboard','manipulation':'yes'},
13 {'room':'livingroom', 'category': 'table', 'location_name':'couchtable','manipulation':'yes'},
14 {'room':'livingroom', 'category': 'shelf', 'location_name':'cabinet', 'manipulation':'yes'},
15 {'room':'livingroom', 'category': 'appliance', 'location_name':'tv', 'manipulation':'no'},
16 {'room':'livingroom', 'category': 'seat', 'location_name':'couch', 'manipulation':'no'},
17 {'room':'kitchen', 'category': '', 'location_name':'kitchencounter','manipulation':'yes'},
18 {'room':'kitchen', 'category': 'appliance', 'location_name':'stove', 'manipulation':'yes'},
19 {'room':'kitchen', 'category': 'appliance', 'location_name':'fridge', 'manipulation':'yes'},
20 {'room':'kitchen', 'category': 'appliance', 'location_name':'sink', 'manipulation':'yes'},
21 {'room':'kitchen', 'category': 'utility', 'location_name':'trashbin', 'manipulation':'no'},
22 {'room':'kitchen', 'category': 'table', 'location_name':'bartable', 'manipulation':'yes'},
23 {'room':'hall', 'category': 'table', 'location_name':'small_table', 'manipulation':'yes'},
24 {'room':'hall', 'category': 'utility', 'location_name':'coathanger', 'manipulation':'no'},
25 {'room':'bedroom', 'category': 'seat', 'location_name':'bed', 'manipulation':'yes'},
26 {'room':'bedroom', 'category': 'table', 'location_name':'left_bedside_table', 'manipulation':'yes'},
27 {'room':'bedroom', 'category': 'table', 'location_name':'right_bedside_table', 'manipulation':'yes'},
28 {'room':'office', 'category': 'table', 'location_name':'counter', 'manipulation':'yes'},
29 {'room':'office', 'category': 'shelf', 'location_name':'left_bookcase', 'manipulation':'yes'},
30 {'room':'office', 'category': 'shelf', 'location_name':'right_bookcase', 'manipulation':'yes'},
31 {'room':'office', 'category': 'table', 'location_name':'dinnertable', 'manipulation':'yes'},
32 {'room':'office', 'category': 'table', 'location_name':'desk', 'manipulation':'yes'}]
33 
34 location_rooms = list(set([ o["room"] for o in all_locations ]))
35 location_categories = list(set([ o["category"] for o in all_locations ]))
36 location_names = list(set([ o["location_name"] for o in all_locations ]))
37 location_manipulatable = list(set([ o["manipulation"] for o in all_locations ]))
38 
39 objects = [
40 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'bubblegum'},
41 {'category': 'decoration', 'placement': 'couchtable', 'group': 'known', 'name': 'candle'},
42 {'category': 'leisure', 'placement': 'small_table', 'group': 'known', 'name': 'cup'},
43 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'beer'},
44 {'category': 'tool', 'placement': 'counter', 'group': 'known', 'name': 'wd40'},
45 {'category': 'tool', 'placement': 'counter', 'group': 'known', 'name': 'filler'},
46 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'chocolate_cereals', 'sub-category': 'cereal'},
47 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'coke', 'sub-category': 'medicine'},
48 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'chocosticks'},
49 {'category': 'decoration', 'placement': 'couchtable', 'group': 'known', 'name': 'yellow candle'},
50 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'noodles'},
51 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'coffee'},
52 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'cranberry_cereals', 'sub-category': 'cereal'},
53 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'muesli_cereals', 'sub-category': 'cereal'},
54 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'bubblemint', 'sub-category': 'medicine'},
55 {'category': 'leisure', 'placement': 'small_table', 'group': 'known', 'name': 'deodorant', 'sub-category': 'medicine'},
56 {'category': 'tool', 'placement': 'counter', 'group': 'known', 'name': 'brush'},
57 {'category': 'leisure', 'placement': 'small_table', 'group': 'known', 'name': 'cigarettes'},
58 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'red_bull'},
59 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'meadow_milk','sub-category': 'milk'},
60 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'ice-tea'},
61 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'mints', 'sub-category': 'medicine'},
62 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'pringles'},
63 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'fresh_milk', 'sub-category': 'milk'},
64 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'oblates'},
65 {'category': 'drink', 'placement': 'cabinet', 'group': 'known', 'name': 'coffeepads'},
66 {'category': 'food', 'placement': 'stove', 'group': 'known', 'name': 'peanut'},
67 {'category': 'food', 'placement': 'stove', 'group': 'alike', 'name': 'mandarine', 'sub-category': 'fruit'},
68 {'category': 'tool', 'placement': 'counter', 'group': 'alike', 'name': 'tape'},
69 {'category': 'food', 'placement': 'stove', 'group': 'alike', 'name': 'lemon', 'sub-category': 'fruit'},
70 {'category': 'tool', 'placement': 'counter', 'group': 'alike', 'name': 'twine'},
71 {'category': 'drink', 'placement': 'cabinet', 'group': 'alike', 'name': 'fanta'},
72 {'category': 'food', 'placement': 'stove', 'group': 'alike', 'name': 'apple', 'sub-category': 'fruit'},
73 {'category': 'bowl', 'placement': '', 'group': 'containers', 'name': 'bowl'},
74 {'category': 'tray', 'placement': '', 'group': 'containers', 'name': 'tray'}]
75 
76 object_names = list(set([ o["name"] for o in objects ]))
77 object_categories = list(set([ o["category"] for o in objects ]))
78 object_groups = list(set([ o["group"] for o in objects ]))
79 object_placements = list(set([ o["placement"] for o in objects ]))
80 object_known_objects = list(set([ o["name"] for o in objects ]))